Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3716, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355753

RESUMO

Glycoproteins in urine have the potential to provide a rich class of informative molecules for studying human health and disease. Despite this promise, the urine glycoproteome has been largely uncharacterized. Here, we present the analysis of glycoproteins in human urine using LC-MS/MS-based intact glycopeptide analysis, providing both the identification of protein glycosites and characterization of the glycan composition at specific glycosites. Gene enrichment analysis reveals differences in biological processes, cellular components, and molecular functions in the urine glycoproteome versus the urine proteome, as well as differences based on the major glycan class observed on proteins. Meta-heterogeneity of glycosylation is examined on proteins to determine the variation in glycosylation across multiple sites of a given protein with specific examples of individual sites differing from the glycosylation trends in the overall protein. Taken together, this dataset represents a potentially valuable resource as a baseline characterization of glycoproteins in human urine for future urine glycoproteomics studies.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Humanos , Glicopeptídeos/química , Cromatografia Líquida , Glicoproteínas/metabolismo , Proteoma/química , Polissacarídeos/química
2.
Cell Rep Med ; 5(2): 101381, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244540

RESUMO

Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Glicoproteínas de Membrana
3.
iScience ; 26(11): 108292, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026225

RESUMO

Guanylate-binding protein 1 (GBP1) is known as an interferon-γ-induced GTPase. Here, we used genetically modified ovarian cancer (OC) cells to study the role of GBP1. The data generated show that GBP1 inhibition constrains the clonogenic potential of cancer cells. In vivo studies revealed that GBP1 overexpression in tumors promotes tumor progression and reduces median survival, whereas GBP1 inhibition delayed tumor progression with longer median survival. We employed proteomics-based thermal stability assay (CETSA) on GBP1 knockdown and overexpressed OC cells to study its molecular functions. CETSA results show that GBP1 interacts with many members of the proteasome. Furthermore, GBP1 inhibition sensitizes OC cells to paclitaxel treatment via accumulated ubiquitinylated proteins where GBP1 inhibition decreases the overall proteasomal activity. In contrast, GBP1-overexpressing cells acquired paclitaxel resistance via boosted cellular proteasomal activity. Overall, these studies expand the role of GBP1 in the activation of proteasomal machinery to acquire chemoresistance.

4.
Sci Rep ; 13(1): 17031, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813880

RESUMO

Prostate cancer is the most common cancer in men and a major cause of cancer related deaths worldwide. Nearly all affected men develop resistance to current therapies and there is an urgent need to develop new treatments for advanced disease. Aberrant glycosylation is a common feature of cancer cells implicated in all of the hallmarks of cancer. A major driver of aberrant glycosylation in cancer is the altered expression of glycosylation enzymes. Here, we show that GCNT1, an enzyme that plays an essential role in the formation of core 2 branched O-glycans and is crucial to the final definition of O-glycan structure, is upregulated in aggressive prostate cancer. Using in vitro and in vivo models, we show GCNT1 promotes the growth of prostate tumours and can modify the glycome of prostate cancer cells, including upregulation of core 2 O-glycans and modifying the O-glycosylation of secreted glycoproteins. Furthermore, using RNA sequencing, we find upregulation of GCNT1 in prostate cancer cells can alter oncogenic gene expression pathways important in tumour growth and metastasis. Our study highlights the important role of aberrant O-glycosylation in prostate cancer progression and provides novel insights regarding the mechanisms involved.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Glicosilação , Polissacarídeos/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia
5.
J Pathol ; 261(1): 71-84, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550801

RESUMO

Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Próstata , Sialiltransferases , Masculino , Humanos , Glicosilação , Polissacarídeos/química , Polissacarídeos/metabolismo , Reino Unido , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD/metabolismo
6.
Am J Clin Exp Urol ; 11(3): 206-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441441

RESUMO

After spinal cord injury (SCI), use chronic urinary catheters for bladder management is common, making these patients especially vulnerable to catheter-associated complications. Chronic catheterization is associated with bacterial colonization and frequent catheter-associated urinary tract infections (CAUTI). One determinant of infection success and treatment resistance is production of catheter-associated biofilms, composed of microorganisms and host- and microbial-derived components. To better understand the biofilm microenvironment, we performed proteomics analysis of catheter-associated biofilms and paired urine samples from four people with SCI with chronic indwelling urinary catheters. We developed a novel method for the removal of adhered cellular components on catheters that contained both human and microbial homologous proteins. Proteins from seven microbial species were identified including: Escherichia coli, Klebsiella species (spp), Enterococcus spp, Proteus mirabilis, Pseudomonas spp, Staphylococcus spp, and Candida spp. Peptides identified from catheter biofilms were assigned to 4,820 unique proteins, with 61% of proteins assigned to the biofilm-associated microorganisms, while the remainder were human-derived. Contrastingly, in urine, only 51% were assigned to biofilm-associated microorganisms and 4,554 proteins were identified as a human-derived. Of the proteins assigned to microorganisms in the biofilm and paired urine, Enterococcus, Candida spp, and P. mirabilis had greater associations with the biofilm phase, whereas E. coli and Klebsiella had greater associations with the urine phase, thus demonstrating a significant difference between the urine and adhered microbial communities. The microbial proteins that differed significantly between the biofilm and paired urine samples mapped to pathways associated with amino acid synthesis, likely related to adaptation to high urea concentrations in the urine, and growth and protein synthesis in bacteria in the biofilm. Human proteins demonstrated enrichment for immune response in the catheter-associated biofilm. Proteomic analysis of catheter-associated biofilms and paired urine samples has the potential to provide detailed information on host and bacterial responses to chronic indwelling urinary catheters and could be useful for understanding complications of chronic indwelling catheters including CAUTIs, urinary stones, and catheter blockages.

7.
J Thorac Oncol ; 18(10): 1362-1385, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37455012

RESUMO

INTRODUCTION: Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs. METHODS: We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. RESULTS: We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin ß1-dependent process. CONCLUSIONS: We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/patologia , Neovascularização Patológica/genética , Transdiferenciação Celular , Linhagem Celular Tumoral
8.
Stem Cell Reports ; 18(1): 190-204, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36493779

RESUMO

Mesenchymal stem cells (MSCs) are gaining increasing prominence as an effective regenerative cellular therapy. However, ensuring consistent and reliable effects across clinical populations has proved to be challenging. In part, this can be attributed to heterogeneity in the intrinsic molecular and regenerative signature of MSCs, which is dependent on their source of origin. The present work uses integrated omics-based profiling, at different functional levels, to compare the anti-inflammatory, immunomodulatory, and angiogenic properties between MSCs from neonatal (umbilical cord MSC [UC-MSC]) and adult (adipose tissue MSC [AD-MSC], and bone marrow MSC [BM-MSC]) sources. Using multi-parametric analyses, we identified that UC-MSCs promote a more robust host innate immune response; in contrast, adult-MSCs appear to facilitate remodeling of the extracellular matrix (ECM) with stronger activation of angiogenic cascades. These data should help facilitate the standardization of source-specific MSCs, such that their regenerative signatures can be confidently used to target specific disease processes.


Assuntos
Células-Tronco Adultas , Células-Tronco Mesenquimais , Recém-Nascido , Humanos , Proteoma , Transcriptoma , Perfilação da Expressão Gênica , Células da Medula Óssea
9.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076959

RESUMO

The sarcomere regulates striated muscle contraction. This structure is composed of several myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibrosis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle genes in the myocardium will provide important information for understanding numerous cardiac pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomyopathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219 represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian heart regulates cardiomyocyte identity and myocardial contraction.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição , Animais , Regulação da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell Rep Med ; 3(2): 100502, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243415

RESUMO

Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells in vitro, cell-line and patient-derived xenografts in vivo, and ex vivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth in vitro and in vivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.


Assuntos
Neoplasias da Próstata , Proteômica , Proliferação de Células , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico
11.
Prostate ; 82(5): 605-616, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098564

RESUMO

BACKGROUND: Distinguishing men with aggressive from indolent prostate cancer is critical to decisions in the management of clinically localized prostate cancer. Molecular signatures of aggressive disease could help men overcome this major clinical challenge by reducing unnecessary treatment and allowing more appropriate treatment of aggressive disease. METHODS: We performed a mass spectrometry-based proteomic analysis of normal and malignant prostate tissues from 22 men who underwent surgery for prostate cancer. Prostate cancer samples included Grade Groups (3-5), with 8 patients experiencing recurrence and 14 without evidence of recurrence with a mean of 6.8 years of follow-up. To better understand the biological pathways underlying prostate cancer aggressiveness, we performed a systems biology analysis and gene enrichment analysis. Proteins that distinguished recurrent from nonrecurrent cancer were chosen for validation by immunohistochemical analysis on tissue microarrays containing samples from a larger cohort of patients with recurrent and nonrecurrent prostate cancer. RESULTS: In all, 24,037 unique peptides (false discovery rate < 1%) corresponding to 3,313 distinct proteins were identified with absolute abundance ranges spanning seven orders of magnitude. Of these proteins, 115 showed significantly (p < 0.01) different levels in tissues from recurrent versus nonrecurrent cancers. Analysis of all differentially expressed proteins in recurrent and nonrecurrent cases identified several protein networks, most prominently one in which approximately 24% of the proteins in the network were regulated by the YY1 transcription factor (adjusted p < 0.001). Strong immunohistochemical staining levels of three differentially expressed proteins, POSTN, CALR, and CTSD, on a tissue microarray validated their association with shorter patient survival. CONCLUSIONS: The protein signatures identified could improve understanding of the molecular drivers of aggressive prostate cancer and be used as candidate prognostic biomarkers.


Assuntos
Neoplasias da Próstata , Proteômica , Biomarcadores Tumorais/metabolismo , Estudos de Coortes , Humanos , Masculino , Espectrometria de Massas , Prognóstico , Próstata/patologia , Neoplasias da Próstata/metabolismo
12.
Adv Healthc Mater ; 11(5): e2101387, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34879180

RESUMO

Polymeric nanocarriers (PNCs) can be used to deliver therapeutic microRNAs (miRNAs) to solid cancers. However, the ability of these nanocarriers to specifically target tumors remains a challenge. Alternatively, extracellular vesicles (EVs) derived from tumor cells show homotypic affinity to parent cells, but loading sufficient amounts of miRNAs into EVs is difficult. Here, it is investigated whether uPAR-targeted delivery of nanococktails containing PNCs loaded with therapeutic antimiRNAs, and coated with uPA engineered extracellular vesicles (uPA-eEVs) can elicit synergistic antitumor responses. The uPA-eEVs coating on PNCs increases natural tumor targeting affinities, thereby enhancing the antitumor activity of antimiRNA nanococktails. The systemic administration of uPA-eEV-PNCs nanococktail shows a robust tumor tropism, which significantly enhances the combinational antitumor effects of antimiRNA-21 and antimiRNA-10b, and leads to significant tumor regression and extension of progression free survival for syngeneic 4T1 tumor-bearing mice. In addition, the uPA-eEV-PNCs-antimiRNAs nanococktail plus low dose doxorubicin results in a synergistic antitumor effect as evidenced by inhibition of tumor growth, reduction of lung metastases, and extension of survival of 4T1 tumor-bearing mice. The targeted combinational nanococktail strategy could be readily translated to the clinical setting by using autologous cancer cells that have flexibility for ex vivo expansion and genetic engineering.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Camundongos , MicroRNAs/genética , Peptídeos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
13.
Cancer Res ; 82(4): 648-664, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34853070

RESUMO

The invasive leading edge represents a potential gateway for tumor metastasis. The role of fibroblasts from the tumor edge in promoting cancer invasion and metastasis has not been comprehensively elucidated. We hypothesize that cross-talk between tumor and stromal cells within the tumor microenvironment results in activation of key biological pathways depending on their position in the tumor (edge vs. core). Here we highlight phenotypic differences between tumor-adjacent-fibroblasts (TAF) from the invasive edge and tumor core fibroblasts from the tumor core, established from human lung adenocarcinomas. A multiomics approach that includes genomics, proteomics, and O-glycoproteomics was used to characterize cross-talk between TAFs and cancer cells. These analyses showed that O-glycosylation, an essential posttranslational modification resulting from sugar metabolism, alters key biological pathways including the cyclin-dependent kinase 4 (CDK4) and phosphorylated retinoblastoma protein axis in the stroma and indirectly modulates proinvasive features of cancer cells. In summary, the O-glycoproteome represents a new consideration for important biological processes involved in tumor-stroma cross-talk and a potential avenue to improve the anticancer efficacy of CDK4 inhibitors. SIGNIFICANCE: A multiomics analysis of spatially distinct fibroblasts establishes the importance of the stromal O-glycoproteome in tumor-stroma interactions at the leading edge and provides potential strategies to improve cancer treatment. See related commentary by De Wever, p. 537.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Quinase 4 Dependente de Ciclina/genética , Genômica/métodos , Neoplasias/genética , Proteômica/métodos , Proteína do Retinoblastoma/genética , Células Estromais/metabolismo , Células A549 , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética
14.
NPJ Breast Cancer ; 7(1): 141, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711841

RESUMO

Breast cancer remains the second most lethal cancer among women in the United States and triple-negative breast cancer is the most aggressive subtype with limited treatment options. Trop2, a cell membrane glycoprotein, is overexpressed in almost all epithelial cancers. In this study, we demonstrate that Trop2 is overexpressed in triple-negative breast cancer (TNBC), and downregulation of Trop2 delays TNBC cell and tumor growth supporting the oncogenic role of Trop2 in breast cancer. Through proteomic profiling, we discovered a metabolic signature comprised of TALDO1, GPI, LDHA, SHMT2, and ADK proteins that were downregulated in Trop2-depleted breast cancer tumors. The identified oncogene-mediated metabolic gene signature is significantly upregulated in TNBC patients across multiple RNA-expression clinical datasets. Our study further reveals that the metabolic gene signature reliably predicts poor survival of breast cancer patients with early stages of the disease. Taken together, our study identified a new five-gene metabolic signature as an accurate predictor of breast cancer outcome.

15.
Sci Rep ; 11(1): 13305, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172788

RESUMO

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer that rarely develops de novo in primary tumors and is commonly acquired during the development of treatment resistance. NEPC is characterized by gain of neuroendocrine markers and loss of androgen receptor (AR), making it resistant to current therapeutic strategies targeting the AR signaling axis. Here, we report that MCM2, MCM3, MCM4, and MCM6 (MCM2/3/4/6) are elevated in human NEPC and high levels of MCM2/3/4/6 are associated with liver metastasis and poor survival in prostate cancer patients. MCM2/3/4/6 are four out of six proteins that form a core DNA helicase (MCM2-7) responsible for unwinding DNA forks during DNA replication. Inhibition of MCM2-7 by treatment with ciprofloxacin inhibits NEPC cell proliferation and migration in vitro, significantly delays NEPC tumor xenograft growth, and partially reverses the neuroendocrine phenotype in vivo. Our study reveals the clinical relevance of MCM2/3/4/6 proteins in NEPC and suggests that inhibition of MCM2-7 may represent a new therapeutic strategy for NEPC.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Tumores Neuroendócrinos/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células PC-3 , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Sci Rep ; 11(1): 7612, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828176

RESUMO

Prostate cancer remains the most common non-cutaneous malignancy among men in the United States. To discover potential serum-based biomarkers for high-risk prostate cancer, we performed a high-multiplex immunoassay utilizing patient-matched pre-operative and post-operative serum samples from ten men with high-grade and high-volume prostate cancer. Our study identified six (CASP8, MSLN, FGFBP1, ICOSLG, TIE2 and S100A4) out of 174 proteins that were significantly decreased after radical prostatectomy. High levels of CASP8 were detected in pre-operative serum samples when compared to post-operative serum samples and serum samples from patients with benign prostate hyperplasia (BPH). By immunohistochemistry, CASP8 protein was expressed at higher levels in prostate cancer tissues compared to non-cancerous and BPH tissues. Likewise, CASP8 mRNA expression was significantly upregulated in prostate cancer when compared to benign prostate tissues in four independent clinical datasets. In addition, mRNA levels of CASP8 were higher in patients with recurrent prostate cancer when compared to patients with non-recurrent prostate cancer and high expression of CASP8 was associated with worse disease-free survival and overall survival in renal cancer. Together, our results suggest that CASP8 may potentially serve as a biomarker for high-risk prostate cancer and possibly renal cancer.


Assuntos
Caspase 8/genética , Neoplasias da Próstata/genética , Idoso , Biomarcadores Tumorais/sangue , Caspase 8/metabolismo , Intervalo Livre de Doença , Humanos , Imunoensaio/métodos , Imuno-Histoquímica/métodos , Testes Imunológicos/métodos , Masculino , Mesotelina , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Próstata/patologia , Antígeno Prostático Específico/sangue , Prostatectomia , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Risco
17.
Cell Chem Biol ; 28(8): 1206-1220.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33713600

RESUMO

Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteína 1 de Ligação a Y-Box/antagonistas & inibidores , Idoso , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Pessoa de Meia-Idade , Estrutura Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ratos , Proteína 1 de Ligação a Y-Box/análise , Proteína 1 de Ligação a Y-Box/metabolismo
18.
Br J Cancer ; 124(5): 896-900, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33288843

RESUMO

Distinguishing clinically significant from indolent prostate cancer (PC) is a major clinical challenge. We utilised targeted protein biomarker discovery approach to identify biomarkers specific for pro-metastatic PC. Serum samples from the cancer-free group; Cambridge Prognostic Group 1 (CPG1, low risk); CPG5 (high risk) and metastatic disease were analysed using Olink Proteomics panels. Tissue validation was performed by immunohistochemistry in a radical prostatectomy cohort (n = 234). We discovered that nine proteins (pleiotrophin (PTN), MK, PVRL4, EPHA2, TFPI-2, hK11, SYND1, ANGPT2, and hK14) were elevated in metastatic PC patients when compared to other groups. PTN levels were increased in serum from men with CPG5 compared to benign and CPG1. High tissue PTN level was an independent predictor of biochemical recurrence and metastatic progression in low- and intermediate-grade disease. These findings suggest that PTN may represent a novel biomarker for the presence of poor prognosis local disease with the potential to metastasise warranting further investigation.


Assuntos
Biomarcadores Tumorais/sangue , Proteínas de Transporte/sangue , Citocinas/sangue , Prostatectomia/mortalidade , Neoplasias da Próstata/patologia , Seguimentos , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/cirurgia , Taxa de Sobrevida
19.
Oncogene ; 40(3): 663-676, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219316

RESUMO

Prostate cancer is responsible for over 30,000 US deaths annually, attributed largely to incurable metastatic disease. Here, we demonstrate that high levels of plectin are associated with localized and metastatic human prostate cancer when compared to benign prostate tissues. Knock-down of plectin inhibits prostate cancer cell growth and colony formation in vitro, and growth of prostate cancer xenografts in vivo. Plectin knock-down further impairs aggressive and invasive cellular behavior assessed by migration, invasion, and wound healing in vitro. Consistently, plectin knock-down cells have impaired metastatic colonization to distant sites including liver, lung, kidney, bone, and genitourinary system. Plectin knock-down inhibited number of metastases per organ, as well as decreased overall metastatic burden. To gain insights into the role of plectin in prostate cancer growth and metastasis, we performed proteomic analysis of prostate cancer plectin knock-down xenograft tissues. Gene set enrichment analysis shows an increase in levels of proteins involved with extracellular matrix and laminin interactions, and a decrease in levels of proteins regulating amino acid metabolism, cytoskeletal proteins, and cellular response to stress. Collectively these findings demonstrate that plectin is an important regulator of prostate cancer cell growth and metastasis.


Assuntos
Proliferação de Células , Proteínas de Neoplasias/metabolismo , Plectina/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Plectina/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
20.
Hepatology ; 73(6): 2342-2360, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33140851

RESUMO

BACKGROUND AND AIMS: Vascular invasion (VI) is a critical risk factor for HCC recurrence and poor survival. The molecular drivers of vascular invasion in HCC are open for investigation. Deciphering the molecular landscape of invasive HCC will help identify therapeutic targets and noninvasive biomarkers. APPROACH AND RESULTS: To this end, we undertook this study to evaluate the genomic, transcriptomic, and proteomic profile of tumors with VI using the multiplatform cancer genome atlas (The Cancer Genome Atlas; TCGA) data (n = 373). In the TCGA Liver Hepatocellular Carcinoma cohort, macrovascular invasion was present in 5% (n = 17) of tumors and microvascular invasion in 25% (n = 94) of tumors. Functional pathway analysis revealed that the MYC oncogene was a common upstream regulator of the mRNA, miRNA, and proteomic changes in VI. We performed comparative proteomic analyses of invasive human HCC and MYC-driven murine HCC and identified fibronectin to be a proteomic biomarker of invasive HCC (mouse fibronectin 1 [Fn1], P = 1.7 × 10-11 ; human FN1, P = 1.5 × 10-4 ) conserved across the two species. Mechanistically, we show that FN1 promotes the migratory and invasive phenotype of HCC cancer cells. We demonstrate tissue overexpression of fibronectin in human HCC using a large independent cohort of human HCC tissue microarray (n = 153; P < 0.001). Lastly, we showed that plasma fibronectin levels were significantly elevated in patients with HCC (n = 35; mean = 307.7 µg/mL; SEM = 35.9) when compared to cirrhosis (n = 10; mean = 41.8 µg/mL; SEM = 13.3; P < 0.0001). CONCLUSIONS: Our study evaluates the molecular landscape of tumors with VI, identifying distinct transcriptional, epigenetic, and proteomic changes driven by the MYC oncogene. We show that MYC up-regulates fibronectin expression, which promotes HCC invasiveness. In addition, we identify fibronectin to be a promising noninvasive proteomic biomarker of VI in HCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Genes myc , Genômica/métodos , Neoplasias Hepáticas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/patologia , Feminino , Fibronectinas/genética , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...